New to Gradio? Start here: Getting Started
See the Release History
gradio.ScatterPlot(···)
Behavior
As input: this component does *not* accept input.
As output: expects a pandas dataframe with the data to plot.
Initialization
Parameter | Description |
---|---|
value
pd.DataFrame | Callable | None default: None |
The pandas dataframe containing the data to display in a scatter plot, or a callable. If callable, the function will be called whenever the app loads to set the initial value of the component. |
x
str | None default: None |
Column corresponding to the x axis. |
y
str | None default: None |
Column corresponding to the y axis. |
color
str | None default: None |
The column to determine the point color. If the column contains numeric data, gradio will interpolate the column data so that small values correspond to light colors and large values correspond to dark values. |
size
str | None default: None |
The column used to determine the point size. Should contain numeric data so that gradio can map the data to the point size. |
shape
str | None default: None |
The column used to determine the point shape. Should contain categorical data. Gradio will map each unique value to a different shape. |
title
str | None default: None |
The title to display on top of the chart. |
tooltip
list[str] | str | None default: None |
The column (or list of columns) to display on the tooltip when a user hovers a point on the plot. |
x_title
str | None default: None |
The title given to the x axis. By default, uses the value of the x parameter. |
y_title
str | None default: None |
The title given to the y axis. By default, uses the value of the y parameter. |
color_legend_title
str | None default: None |
The title given to the color legend. By default, uses the value of color parameter. |
size_legend_title
str | None default: None |
The title given to the size legend. By default, uses the value of the size parameter. |
shape_legend_title
str | None default: None |
The title given to the shape legend. By default, uses the value of the shape parameter. |
color_legend_position
Literal['left', 'right', 'top', 'bottom', 'top-left', 'top-right', 'bottom-left', 'bottom-right', 'none'] | None default: None |
The position of the color legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. |
size_legend_position
Literal['left', 'right', 'top', 'bottom', 'top-left', 'top-right', 'bottom-left', 'bottom-right', 'none'] | None default: None |
The position of the size legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. |
shape_legend_position
Literal['left', 'right', 'top', 'bottom', 'top-left', 'top-right', 'bottom-left', 'bottom-right', 'none'] | None default: None |
The position of the shape legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation. |
height
int | None default: None |
The height of the plot in pixels. |
width
int | None default: None |
The width of the plot in pixels. |
x_lim
list[int | float] | None default: None |
A tuple or list containing the limits for the x-axis, specified as [x_min, x_max]. |
y_lim
list[int | float] | None default: None |
A tuple of list containing the limits for the y-axis, specified as [y_min, y_max]. |
caption
str | None default: None |
The (optional) caption to display below the plot. |
interactive
bool | None default: True |
Whether users should be able to interact with the plot by panning or zooming with their mouse or trackpad. |
label
str | None default: None |
The (optional) label to display on the top left corner of the plot. |
every
float | None default: None |
If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute. |
show_label
bool | None default: None |
Whether the label should be displayed. |
container
bool default: True |
|
scale
int | None default: None |
|
min_width
int default: 160 |
|
visible
bool default: True |
Whether the plot should be visible. |
elem_id
str | None default: None |
An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. |
elem_classes
list[str] | str | None default: None |
An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles. |
Shortcuts
Class | Interface String Shortcut | Initialization |
---|---|---|
|
"scatterplot" |
Uses default values |
Demos
import gradio as gr
from vega_datasets import data
cars = data.cars()
iris = data.iris()
# # Or generate your own fake data
# import pandas as pd
# import random
# cars_data = {
# "Name": ["car name " + f" {int(i/10)}" for i in range(400)],
# "Miles_per_Gallon": [random.randint(10, 30) for _ in range(400)],
# "Origin": [random.choice(["USA", "Europe", "Japan"]) for _ in range(400)],
# "Horsepower": [random.randint(50, 250) for _ in range(400)],
# }
# iris_data = {
# "petalWidth": [round(random.uniform(0, 2.5), 2) for _ in range(150)],
# "petalLength": [round(random.uniform(0, 7), 2) for _ in range(150)],
# "species": [
# random.choice(["setosa", "versicolor", "virginica"]) for _ in range(150)
# ],
# }
# cars = pd.DataFrame(cars_data)
# iris = pd.DataFrame(iris_data)
def scatter_plot_fn(dataset):
if dataset == "iris":
return gr.ScatterPlot.update(
value=iris,
x="petalWidth",
y="petalLength",
color="species",
title="Iris Dataset",
color_legend_title="Species",
x_title="Petal Width",
y_title="Petal Length",
tooltip=["petalWidth", "petalLength", "species"],
caption="",
)
else:
return gr.ScatterPlot.update(
value=cars,
x="Horsepower",
y="Miles_per_Gallon",
color="Origin",
tooltip="Name",
title="Car Data",
y_title="Miles per Gallon",
color_legend_title="Origin of Car",
caption="MPG vs Horsepower of various cars",
)
with gr.Blocks() as scatter_plot:
with gr.Row():
with gr.Column():
dataset = gr.Dropdown(choices=["cars", "iris"], value="cars")
with gr.Column():
plot = gr.ScatterPlot()
dataset.change(scatter_plot_fn, inputs=dataset, outputs=plot)
scatter_plot.load(fn=scatter_plot_fn, inputs=dataset, outputs=plot)
if __name__ == "__main__":
scatter_plot.launch()
Methods
gradio.ScatterPlot.change(fn, ···)
Description
This listener is triggered when the component's value changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See `.input()` for a listener that is only triggered by user input. This method can be used when this component is in a Gradio Blocks.
Agruments
Parameter | Description |
---|---|
fn
Callable | None required |
the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component. |
inputs
Component | list[Component] | set[Component] | None default: None |
List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list. |
outputs
Component | list[Component] | None default: None |
List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list. |
api_name
str | None | Literal[False] default: None |
Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name. |
status_tracker
None default: None |
|
scroll_to_output
bool default: False |
If True, will scroll to output component on completion |
show_progress
Literal['full', 'minimal', 'hidden'] default: "full" |
If True, will show progress animation while pending |
queue
bool | None default: None |
If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app. |
batch
bool default: False |
If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component. |
max_batch_size
int default: 4 |
Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True) |
preprocess
bool default: True |
If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component). |
postprocess
bool default: True |
If False, will not run postprocessing of component data before returning 'fn' output to the browser. |
cancels
dict[str, Any] | list[dict[str, Any]] | None default: None |
A list of other events to cancel when This listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish. |
every
float | None default: None |
Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled. |
gradio.ScatterPlot.clear(fn, ···)
Description
This listener is triggered when the user clears the component (e.g. image or audio) using the X button for the component. This method can be used when this component is in a Gradio Blocks.
Agruments
Parameter | Description |
---|---|
fn
Callable | None required |
the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component. |
inputs
Component | list[Component] | set[Component] | None default: None |
List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list. |
outputs
Component | list[Component] | None default: None |
List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list. |
api_name
str | None | Literal[False] default: None |
Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name. |
status_tracker
None default: None |
|
scroll_to_output
bool default: False |
If True, will scroll to output component on completion |
show_progress
Literal['full', 'minimal', 'hidden'] default: "full" |
If True, will show progress animation while pending |
queue
bool | None default: None |
If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app. |
batch
bool default: False |
If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component. |
max_batch_size
int default: 4 |
Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True) |
preprocess
bool default: True |
If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component). |
postprocess
bool default: True |
If False, will not run postprocessing of component data before returning 'fn' output to the browser. |
cancels
dict[str, Any] | list[dict[str, Any]] | None default: None |
A list of other events to cancel when This listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish. |
every
float | None default: None |
Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled. |